Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting

نویسندگان

  • Yu-Hsien Hwang Fu
  • William Y C Huang
  • Kuang Shen
  • Jay T Groves
  • Thomas Miller
  • Shu-Ou Shan
چکیده

The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-translational protein targeting to the bacterial membrane.

Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localizati...

متن کامل

Co-translational protein targeting by the signal recognition particle.

The signal recognition particle (SRP) mediates the co-translational targeting of nascent proteins to the eukaryotic endoplasmic reticulum membrane, or the bacterial plasma membrane. During this process, two GTPases, one in the SRP and one in the SRP receptor (SR), form a complex in which both proteins reciprocally activate the GTPase reaction of one another. The recent crystal structures of the...

متن کامل

Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA.

Cotranslational protein targeting to membranes is regulated by two GTPases in the signal recognition particle (SRP) and the SRP receptor; association between the two GTPases is slow and is accelerated 400-fold by the SRP RNA. Intriguingly, the otherwise universally conserved SRP RNA is missing in a novel chloroplast SRP pathway. We found that even in the absence of an SRP RNA, the chloroplast S...

متن کامل

Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor.

The Ffh-4.5S ribonucleoprotein particle (RNP) and FtsY from Escherichia coli are homologous to essential components of the mammalian signal recognition particle (SRP) and SRP receptor, respectively. The ability of these E. coli components to function in a bona fide co-translational targeting pathway remains unclear. Here we demonstrate that the Ffh-4.5S RNP and FtsY can efficiently replace thei...

متن کامل

The bacterial SRP receptor, FtsY, is activated on binding to the translocon.

Proteins are inserted into the bacterial plasma membrane cotranslationally after translating ribosomes are targeted to the translocon in the membrane via the signal recognition particle (SRP) pathway. The targeting pathway involves an interaction between SRP and the SRP receptor, FtsY. Here we focus on the role of FtsY and its interaction with the translocon in controlling targeting. We show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017